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Question

How to use the online anime image to make the computer generate 
indistinguishable anime avatar?

http://qiita.com/mattya/items/e5bfe5e04b9d2f0bbd47

http://qiita.com/mattya/items/e5bfe5e04b9d2f0bbd47


Solution

Naturally, we think of using machine learning to let the machine learn to draw.

The general methods of machine learning can't achieve results, so some people 

have designed a new network architecture for this.

In 2014, Ian J. Goodfellow et al. proposed a new framework for estimating 

generative models via an adversarial process, which is 

（ ）.



30 minute later



2 hours later



After one day

https://www.saluzi.com/t/google-ai/27020
http://mattya.github.io/chainer-DCGAN/

https://www.saluzi.com/t/google-ai/27020
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• D learns to determine whether a currency is from the fake currency or the real currency. 

• G try to produce fake currency and use it without detection. 

• Competition in this game drives both teams to improve their methods until the counterfeits are indistiguishable from the 

genuine articles.



In other words, D and G play the following two-player minimax game with value function V 

(G,D): 

Pg and Pdata represent the distribution of the samples G(z) and real data x, respectively.

So this minimax game has a global optimum for Pg = Pdata .

For G fixed, the optimal discriminator D is

𝑖𝑓 𝑃𝑑𝑎𝑡𝑎 𝑥 = 0, 𝑃𝑔 𝑥 ≠ 0, 𝐷𝐺
∗(𝑥) = 0. fake

𝑖𝑓 𝑃𝑑𝑎𝑡𝑎 𝑥 ≠ 0, 𝑃𝑔 𝑥 = 0, 𝐷𝐺
∗(𝑥) = 1. real



collapse mode

In 2016, Ian J. Goodfellow et al. find that one of the main failure modes for 
GAN is for the generator to collapse to a parameter setting where it always emits the 
same point.                                          ----

When collapse to a single mode is imminent, the gradient of the discriminator 
may point in similar directions for many similar points. 

Because the discriminator processes each example independently, there is no 
coordination between its gradients, and thus no mechanism to tell the outputs of the 
generator to become more dissimilar to each other. 

Instead, all outputs race toward a single point that the discriminator currently 
believes is highly realistic.



In 2016, Martin Arjovsky et al. pushed a set of formula theorems in 
to theoretically 

analyze the problem of the original GAN.

Review

In the original GAN, the discriminator should minimize the following loss function, and divide 
the real sample into positive examples, and generate samples into negative examples.

(1)

For generator, the loss function is 

(2)

or                                                                               (3)



Problem 1: The training is unstable.

In one words: Why do updates get worse as the discriminator gets better?

First, we can get from Equation 1 what the optimal discriminator D should be when the 
generator was fixed. For a specific sample, it may come from the real distribution or from the 
generated distribution, and its contribution to the loss function of Equation 1 is

Let derivatives for D(x) be 0, we get

Simplified, the optimal discriminator D is

(4)



When the discriminator is optimal, what does the generator's loss 
function become?

Add a term that does not depend on the generator to Equation 2, making it

Obtained by formula 4,

(5)

In addition, we introduced Kullback-Leibler (KL) divergence and Jensen-Shannon (JS) 
divergence,

Formula 5 be,



When the discriminator is optimal, we can equalize the loss function of 
the generator to minimize the JS divergence between Pr and Pg.

What is the JS divergence? There are only four cases for x,

JS=0

JS=log2

JS=log2

The point x is located in the portion where Pr and Pg overlap.

In fact, The only way this can happen is if the distributions are not continuous, or they have 
disjoint supports. Because their supports lie on low dimensional manifolds.



When the support of Pr and Pg is a low-dimensional manifold in a high-dimensional space, the 
probability that the measure of the overlap part of Pr and P

g
is 0 is 1.

In mathematics, a manifold is a topological space that locally resembles Euclidean space near 
each point. More precisely, each point of an n-dimensional manifold has a neighbourhood that is 
homeomorphic to the Euclidean space of dimension n. In this more precise terminology, a manifold is 
referred to as an n-manifold.

One-dimensional manifolds include lines and circles. Two-dimensional manifolds are also called 
surfaces. Examples include the plane, the sphere, and the torus, which can all be embedded (formed 
without self-intersections) in three dimensional real space.

In mathematical analysis, a measure on a set is a systematic way to assign a number to each 
suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a 
generalization of the concepts of length, area, and volume. 



In the case of GANs, Pg is defined via sampling from a simple prior 𝑧~𝑝 𝑧 (for example,100-dimensional), 

and then applying a function 𝑔: 𝑍 → 𝜒, so the support of Pg has to be contained in g(Z). If the dimensionality of 

Z is less than the dimension of 𝜒 (for example, a picture:64 × 64,4096-dimensional), then it’s imposible for Pg

to be continuous. This is because in most cases g(Z) will be contained in a union of low dimensional manifolds, 

and therefore have measure 0 in 𝜒.

Randomly select two curves in two-dimensional space, they are likely to have cross points, but its length is 
0. The three-dimensional space is similar, take two surfaces randomly, they are more likely to exist cross lines, 
but the area is 0.

When the discriminator is optimal, we can equalize the loss function of the generator to minimize the JS 

divergence between Pr and Pg. However, their JS divergence is constant log2, which eventually causes the 

generator's gradient to be approximately 0 and the gradient to disappear.



First, we trained a DCGAN for 1, 10 and 25 epochs. Then, with the generator fixed we train a 

discriminator from scratch and measure the gradients with the original cost function. We see the 

gradient norms decay quickly, in the best case 5 orders of magnitude after 4000 discriminator iterations. 

Note the logarithmic scale.



Problem 2: collapse mode.

We have

We transform the KL divergence into a form containing D:

Therefore,

LossG =



• Case 1: If 𝑃𝑟 𝑥 > 𝑃𝑔 𝑥 , then x is a point with higher probability of coming from the data than being a 

generated sample. This is the core of the phenomenon commonly described as ‘mode dropping’: when there 

are large regions with high values of 𝑃𝑟, but small or zero values in 𝑃𝑔. It is important to note that when 

𝑃𝑟 𝑥 > 0 but 𝑃𝑔 𝑥 → 0, the integrand inside the KL grows quickly to infinity, meaning that this cost 

function assigns an extremely high cost to a generator’s distribution not covering parts of the data.

• Case 2: If 𝑃𝑟 𝑥 < 𝑃𝑔 𝑥 , then x has low probability of being a data point, but high probability of being 

generated by our model. This is the case when we see our generator outputting an image that doesn’t look real. 

In this case, when 𝑃𝑟 𝑥 → 0 and 𝑃𝑔 𝑥 > 0 , we see that the value inside the KL goes to 0, meaning that this 

cost function will pay extremely low cost for generating fake looking samples.

Clearly, if we would minimize 𝐾𝐿 𝑃𝑔|𝑃𝑟 instead, the weighting of these errors would be reversed, 

meaning that this cost function would pay a high cost for generating not plausibly looking pictures.



Wasserstein distance

The Earth-Mover (EM) distance or Wasserstein-1

(6)             

where ∏ ℙ𝑟 , ℙ𝑔 denotes the set of all joint distributions 𝛾 𝑥, 𝑦 whose marginals are 

respectively ℙ𝑟 and ℙ𝑔. Intuitively, 𝛾 𝑥, 𝑦 indicates how much “mass” must be transported from x

to y in order to transform the distributions ℙ𝑟 into the distribution ℙ𝑔. The EM distance then is the 

“cost” of the optimal transport plan.



Compared JS, the advantage of the EM distance.

The fact that the EM distance is continuous and differentiable a.e. means that we can (and should) 

train the critic till optimality. The argument is simple, the more we train the critic, the more reliable 

gradient of the Wasserstein we get, which is actually useful by the fact that Wasserstein is 

differentiable almost everywhere. 

For the JS, as the discriminator gets better the gradients get more reliable but the true gradient is 

0 since the JS is locally saturated and we get vanishing gradients.



Wasserstein GAN (WGAN)

In 2017, Martin Arjovsky et al. provided a comprehensive theoretical analysis of how the 
Earth Mover (EM) distance behaves in comparison to popular probability distances and divergences 
used in the context of learning distributions. And they also defined a form of GAN called 
Wasserstein-GAN that minimizes a reasonable and efficient approximation of the EM distance.

Author pointed to the fact that W ℙ𝑟 , ℙ𝑔 might have nicer properties when optimized than 

J𝑆 ℙ𝑟 , ℙ𝑔 . However, the infimum in formula 6 is highly intractable. On the other hand, the 

Kantorovich-Rubinstein duality tells us that

where the supremum is over all the functions 𝑓: 𝜒 → ℝ.



Lipschitz continuity

In mathematical analysis, Lipschitz continuity is a strong form of uniform continuity for 
functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists 
a real number such that, for every pair of points on the graph of this function, the absolute value of 
the slope of the line connecting them is not greater than this real number; the smallest such bound is 
called the Lipschitz constant of the function (or modulus of uniform continuity). For instance, every 
function that has bounded first derivatives is Lipschitz.

In particular, a real-valued function f : R → R is called Lipschitz continuous if there exists a 
positive real constant K such that, for all real x1 and x2,

Any such K is referred to as a Lipschitz constant for the function f. The smallest constant is 
sometimes called the (best) Lipschitz constant;



Compared the original GAN, WGAN has only changed four points:

• The last layer of the discriminator removes sigmoid.

• The loss of the generator and discriminator doesn’t compute the log.

• Each updated the parameters of the discriminator, their values are truncated to no 
more than a fixed constant c. (called clipping — to satisfy the condition of 

)

• Do not use momentum-based optimization algorithms (including momentum and 
Adam), recommend RMSProp, SGD.



Improved Training of Wasserstein GANs

The WGAN makes progress toward stable training of GANs, but can still generate low-quality 
samples or fail to converge in some settings. Martin Arjovsky et al. finded that these problems are 
often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, 
which can lead to pathological behavior.

In 2017, Martin Arjovsky et al. proposed an alternative to clipping weights: penalize the 
norm of gradient of the critic with respect to its input (called ) on 

.



(left) Gradient norms of deep WGAN critics during training on toy datasets either explode or vanish when 
using weight clipping, but not when using a gradient penalty. (right)Weight clipping (top) pushes weights 
towards two values (the extremes of the clipping range), unlike gradient penalty (bottom).



gradient penalty

As previously mentioned, the limit requires that the discriminator's gradient not 
exceed K. 

So why not just set an extra loss item to reflect this? For example:

(7)

Or

(8)

In this paper, the author chose formula 8.



gradient penalty

Our new objective is

We implicitly define ℙ ො𝑥 sampling uniformly along straight lines between pairs of points sampled from the 
data distribution ℙ𝑟 and the generator distribution ℙ𝑔 . This is motivated by the fact that the graph of the optimal 

critic consists of straight lines connecting points from ℙ𝑟 and ℙ𝑔 . 

In general, the penalty coefficient 𝛾 = 10.



Extension: Variants of GAN

(CoGAN) consists of a pair of GANs: GAN1 and GAN2. 
Each has a generative model for synthesizing realistic images in one domain and a discriminative model 
for classifying whether an image is real or synthesized. We tie the weights of the first few layers 
(responsible for decoding high-level semantics) of the generative models, g1 and g2. We also tie the 
weights of the last few layers (responsible for encoding high-level semantics) of the discriminative models, 
f1 and f2. This weight-sharing constraint allows CoGAN to learn a joint distribution of images without 
correspondence supervision. A trained CoGAN can be used to synthesize pairs of corresponding images—
pairs of images sharing the same high-level abstraction but having different low-level realizations.



Least Squares Generative Adversarial Networks(LSGAN)

In 2017, Xudong Mao et al. proposed the Least Squares Generative Adversarial Networks 

(LSGANs) which adopt the least squares loss function for the discriminator. We show that 

minimizing the objective function of LSGAN yields minimizing the Pearson X2 divergence.

The objective function of LSGAN is

min
𝐷

𝑉𝐿𝑆𝐺𝐴𝑁 𝐷 =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎 𝑥 𝐷 𝑥 − 1 2 +

1

2
𝔼𝑧~𝑝𝑧 𝑧 𝐷 𝐺 𝑧 + 1 2

min
𝐺

𝑉𝐿𝑆𝐺𝐴𝑁 𝐺 =
1

2
𝔼𝑧~𝑝𝑧 𝑧 𝐷 𝐺 𝑧

2



BEGAN: Boundary Equilibrium Generative Adversarial Networks

David Berthelot et 
al. proposed a new equilibrium enforcing method paired with a loss derived from the Wasserstein 

distance for training auto-encoder based Generative Adversarial Networks. This method balances the 

generator and discriminator during training.

The Wasserstein distance can be expressed as:

𝑊1 𝜇1, 𝜇2 = 𝛾∈Γ 𝜇1,𝜇2
inf 𝔼 𝑥1,𝑥2 ~𝛾 𝑥1 − 𝑥2

Using Jensen’s inequality, we can derive a lower bound to 𝑊1 𝜇1, 𝜇2 :

𝑖𝑛𝑓𝔼 𝑥1 − 𝑥2 ≥ 𝑖𝑛𝑓 𝔼 𝑥1 − 𝑥2 = 𝑚1 −𝑚2

It is important to note that we are aiming to optimize a lower bound of the Wasserstein distance 

between auto-encoder loss distributions, not between sample distributions.



BEGAN

We consider them to be at equilibrium when:

𝔼 ℒ 𝑥 = 𝔼 ℒ 𝐺 𝑧

We can relax the equilibrium with the introduction of a new hyper-parameter 𝛾 ∈ 0,1 defined 

as

𝛾 =
𝔼 ℒ 𝐺 𝑧

𝔼 ℒ 𝑥
The BEGAN objective is:

ℒ𝐷 = ℒ 𝑥 − 𝑘𝑡 ∙ ℒ 𝐺 𝑧𝐷 𝑓𝑜𝑟 𝜃𝐷

ℒ𝐺 = ℒ 𝐺 𝑧𝐷 𝑓𝑜𝑟 𝜃𝐺

𝑘𝑡+1 = 𝑘𝑡 + 𝜆𝑘 𝛾ℒ 𝑥 − ℒ 𝐺 𝑧𝐷 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 𝑡




